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Despite major improvements in weather and climate
modelling and substantial increases in remotely
sensed observations, drought prediction remains
a major challenge. After a review of the existing
methods, we discuss major research gaps and
opportunities to improve drought prediction.
We argue that current approaches are top-down,
assuming that the process(es) and/or driver(s)
are known—i.e. starting with a model and then
imposing it on the observed events (reality). With
the help of an experiment, we show that there
are opportunities to develop bottom-up drought
prediction models—i.e. starting from the reality (here,
observed events) and searching for model(s) and
driver(s) that work. Recent advances in artificial
intelligence and machine learning provide significant
opportunities for developing bottom-up drought
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forecasting models. Regardless of the type of drought forecasting model (e.g. machine learning,
dynamical simulations, analogue based), we need to shift our attention to robustness of
theories and outputs rather than event-based verification. A shift in our focus towards
quantifying the stability of uncertainty in drought prediction models, rather than the goodness
of fit or reproducing the past, could be the first step towards this goal. Finally, we highlight
the advantages of hybrid dynamical and statistical models for improving current drought
prediction models.

This article is part of the Royal Society Science+ meeting issue ‘Drought risk in the
Anthropocene’.

1. Introduction
In May 2012, with no hint of an extreme drought from seasonal prediction models, the United
States Department of Agriculture (USDA) predicted a record crop yield. US farmers had planted
the largest area of soyabeans and corn in over 75 years [1], possibly due to favourable weather
forecasts. Just one month later, the entire US Midwest experienced one of the most extreme
droughts on record [2–4]. Approximately 80% of the crop lands experienced drought, resulting
in more than $36 billion in damages [1]. The lack of an early warning was a striking aspect of
this event, and possibly a determinant of overall damages. An early warning with even a two-
month lead time would have likely reduced the drought impacts on the agriculture sector. The
2012 drought is one out of the many extreme drought events from around the world that were
not predicted properly due to unreliable seasonal precipitation predictions [5]. Similar unforeseen
droughts in East Africa have led to two major famines just in the past 50 years with death tolls in
the hundreds of thousands [6,7].

Over the years, several research or operational drought (or hydrological) prediction systems
have been developed, including the Climate Prediction Center Seasonal Drought Outlook [8],
European Drought Observatory [9], the University of Washington’s Surface Water Monitor
[10,11], Princeton University’s drought forecast system [12–14], US–Mexico Drought Prediction
Tool [15], US Drought Monitor [16], Global Integrated Drought Monitoring and Prediction
System ( [17]) and the Columbia University’s International Research Institute seasonal forecasts
[18]. Most existing operational drought forecasting models rely on seasonal predictions from
major numerical weather prediction centres such as the National Oceanic and Atmospheric
Administration’s (NOAA’s) National Centers for Environmental Prediction (NCEP) and the
European Centre for Medium-Range Weather Forecasts (ECMWF). The current drought
prediction models (including non-operational research products) can be broadly categorized into
three groups: (a) dynamical (process-based) models; (b) statistical models including data-driven
artificial intelligence models; and (c) hybrid statistical–dynamical drought prediction systems.

Drought prediction models rely on one or more sources of predictability. Oceanic and
stratospheric low-frequency signals, for example, offer valuable predictive information from short
range to seasonal [19–21]. The Madden–Julian Oscillation (MJO) and El Niño-Southern Oscillation
(ENSO) contribute to the formation of Rossby wave-trains influencing precipitation in mid-
latitudes [22–26]. The effect of such teleconnections varies significantly in different parts of the
world (e.g. a particular oceanic signal can lead to both wet and drought conditions in different
regions). To leverage this information for drought prediction, statistical models typically build
simplified relationships between drought and the relevant teleconnections, whereas process-
based numerical models focus on improving forecasts by reproducing the known teleconnection
processes using physics-based governing equations. Despite major improvements in weather and
climate modelling [27] and the substantial increase in remotely sensed satellite and radar data
[28], drought prediction remains a major challenge [29–31].

In this article, we offer a review of current models and the evolution of different types of
drought prediction approaches. We discuss key gaps and opportunities to improve drought
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Figure 1. Numerical simulation of the [45] dynamical system across space and time: (left) trajectory simulation; (right)
discrepancies in two simulated trajectories projected on the x, y and z-axes. Here, the initial states are perturbed by 10−1, 10−5

and 10−15 (after [44]). (Online version in colour.)

prediction. We also highlight how the increasing attention to artificial intelligence and machine
learning can improve future drought prediction models.

2. Physically based dynamical models
Physically based models (also known as dynamical models) have been widely used for drought
prediction [32,33]. From the establishment of primitive equations for atmospheric dynamics (early
twentieth century) to the first operational weather forecast model, it has taken nearly half a
century to develop the methods needed for drought prediction. However, the current generation
of dynamical models used for drought prediction were developed and operationalized mainly
in the past two decades. These models deterministically describe the dynamic processes and
interactions between the land, atmosphere and ocean using partial differential equations [34],
and approximate the unresolved processes (i.e. radiation and cloud microphysics) using a suite
of parametrization schemes (e.g. [35–42]). Over the years, biogeochemical and even microbial
processes have also been incorporated in dynamic models [43]. Starting from some initial states
(values), these equations apply thermodynamic and conservation laws on a control volume to
simulate changes over time.

Uncertainty in model predictions comes from a wide range of sources including simplified
assumptions, inaccurate initial values and limitations associated with parametrization and model
tuning. A major source of uncertainty and limited predictability is the sensitivity to the initial
states used for solving the governing equations. Small uncertainties in the initial states typically
grow into significant trajectory divergence in the iterative numerical computations [44]. Figure 1,
for example, shows the effects of slightly perturbed initial values on the outcomes of the
[45] dynamical system—a highly simplified model describing the thermodynamics of a two-
dimensional fluid layer warmed from below and cooled from above [45]. The figure shows
that relatively small perturbations in the initial values translate into significant discrepancies in
simulated trajectories. Despite significant progress in dynamic modelling, inaccurate initial value
information has remained as a major source of uncertain predictions. Edward Lorenz (1917–2008),
known for his butterfly effect theory, was not the first to point to the uncertainty/error associated
with initial values (or broadly accuracy of information) on the theoretical limit to prediction
and predictability. In his fundamental work on the so-called ‘Three-Body Problem’, the French
mathematical physicist and philosopher, Henri Poincaré (1854–1912), discovered a chaotic yet
deterministic system limiting our ability to accurately predict the movement of three planetary
bodies—arguably a discovery leading to a new field of research known as chaos theory. With a
focus on earth system models, Poincaré’s discovery and Lorenz’s mathematical experiments point
to one crucial issue: accurate initial states play a significant role, often more so than other factors,
on the accuracy of predictions and impose limits on predictability.
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Figure 2. Milestones in observing and modelling the Earth climate system (after [26]). Achievements from observation are
labelled in light blue, achievements in theory and computation are labelled in black, achievements from a combination of
observation, theory and computation are labelled in navy blue. The curve on the right side denotes the number of operating
Earth observation satellites. Satellite data are obtained fromWorld Meteorological Organisation Observing Systems Capability
Analysis and Review Tool. (Online version in colour.)

In recent decades, the growing number of observations, including in situ measurements
and remotely sensed satellite and radar data products, have significantly improved numerical
weather models by providing more accurate initial states, and also information that can be
used for assimilation [46–50] and forecast verification [46,47]. Along with the improvements
in observations, the computational power for solving numerical models has also increased
substantially. Figure 2 summarizes major advancements in the development of physically based
models and relevant Earth observations. The most striking aspect is the rapid increase in the
emergence of satellite observations and ground-based radars increasing the accuracy of initial
states and reference data for validation. Bridging the gap between weather and climate forecasts
via global cloud resolving models (e.g. [51,52]) has played a pivotal role in improving the accuracy
of long-range forecasting (see the timeline in figure 2). Previous studies have also demonstrated
an improvement in the forecasting skill of dynamical models when the variability of large-scale
oceanic and atmospheric teleconnections is incorporated (e.g. [53–56]).

Over the years, a wide range of models have been developed around the world. To benefit from
the strength of a diverse set of models and overcome the limitations of individual dynamical
models (e.g. resolution, parametrization), there has been a growing tendency to use multiple
models and combine their forecasts [57–59]. A multi-agency effort led to the development of
the North American Multi-Model Ensemble (NMME; [60]), which has provided climate forecasts
ranging from intra-seasonal to inter-seasonal scales. The NMME ensemble average generally
offers better predictions than individual contributing models do for different regions [60–62];
however, the reliability of the precipitation forecasts in general is still rather low [60,61]. Figure 3a,
for example, shows NMME predictions indicating a wet period in the western USA during
December 2014–February 2015 from a forecast initiated in October 2014 (two-month lead time).
The region, however, experienced one of the most extreme droughts on record during the same
period (see US Drought Monitor maps in figure 3b–d). That said, NMME, ECMWF and other
prediction systems sometimes predict droughts accurately, but rarely beyond a six-month (often
three) lead time.

Advancements in physically based climate models in the past decades have led to more
accurate and reliable predictions including seasonal drought forecasts [63–65]. However, the
predictability of physically based models for drought prediction are still far from ideal and are
highly variable in space and particularly at long lead times [54,66,69].
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Figure 3. (a) Drought predictions based on NNME indicating a wet period in the western USA during December 2014–February
2015 from a forecast initiated in October 2014 (two-month lead time). (b–d) Observed extreme and exceptional drought based
on the United States Drought Monitor maps. (Online version in colour.)

3. Statistical models
Along with dynamical models, a wide range of statistical drought prediction models have
been developed over the years. Instead of solving the underlying governing equations, the
premise behind statistical drought forecasting is that (a) there is temporal persistence in
drought indicators [70] such as the Standardized Precipitation Index (SPI; [71]) and Palmer
Drought Severity Index (PDSI) [72,73], and in land surface characteristics like soil moisture
and snow cover [6]; (b) there is a relationship between different drought types. For example,
hydrological (i.e. runoff/groundwater deficit) and agricultural (i.e. soil moisture) droughts
are preceded by meteorological drought (i.e. deficit in precipitation) and hence the latter can
forecast the state of the former (e.g. [74]); and (c) the observed relationship between drought
and ocean or atmosphere conditions (aka teleconnections) [75–77] can be used for seasonal
drought/precipitation forecasting (e.g. [78–82]).

To address these premises, statistical drought models use a plethora of predictors, representing
the underlying processes [83] or relationship between drought-related variables or drought
features (e.g. [84–89]). While earlier studies were mostly reliant on the persistence properties of
drought indicators [32,33,90], recent studies merge information from initial land conditions and
climate/weather data (i.e. persistence) with large-scale climate indices (i.e. teleconnection) [91,92].

Oceanic–atmospheric teleconnections and circulation patterns that affect the large-scale
precipitation producing phenomena are forced by sea surface temperature (SST) anomaly [93,94],
land atmosphere feedback [95] and natural and anthropogenic changes in radiative forcing [96].
The SST anomaly is presented in terms of large-scale indices such as ENSO, Pacific Decadal
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Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) [77,97,98]). Also referred to as
teleconnections, these ocean precursors are often used for seasonal scale drought forecasting at
large spatial scales, such as large river basins [99].

In many drought forecasting models, predictability of drought relies on the slowly varying
boundary/climatic conditions (e.g. SST anomaly and land surface characteristics) over time [29].
Atmospheric, oceanic and hydrological predictors of drought are region and season specific [100],
and their predictive skill varies by spatial and temporal scales, and lead time [32,101]. Different
regions show widely varying correlations with large-scale oceanic and atmospheric indices
[96,102,103]. Correlation, composite analyses and principal component methods are commonly
used to identify the proper drought predictors at the spatial and temporal scales, season and lead
time of interest [19,104]. We will discuss the limitations of this so-called top-down perspective in
drought forecasting.

It is tempting to include all variables that have predictive skills in forecasting drought, but
the modeller should be cognizant of redundant information in various data sources and model
overfitting problems [105]. The latter case may lead to poor performance, especially in cases that
involve states that are out of bound of training data [105]. Several methods have been widely used
in the literature to reduce dimensionality of the drought forecasting problem, including removing
redundant information and finding orthogonal predictors, such as the principal component
analysis and canonical correlation analysis [106]. The identified predictors are then used to build
a statistical model that can take one or more of the general categories described below.

(a) Stochastic time series models
Time series models rely on the dependence between the predictor–predictand relationship and/or
persistence property of drought indices (e.g. soil moisture) [107–111]. This persistence property
is mainly due to the accumulation (e.g. six-month SPI) or autoregressive property (e.g. memory
or autocorrelation of PDSI) of the drought indices [29] and the fact that drought is relatively
slow moving/evolving in nature. For this reason, longer time scales (e.g. 12-month SPI relative
to six-month SPI) and shorter lead times (one month relative to three months) are relatively more
predictable [101]. In general, autoregressive models ( [112,113]) are appealing as they exploit the
association of the future state of a process with its current and past states (univariate case), or
the association with current and past states of other processes (multivariate case). Autoregressive
integrated moving average (ARIMA) models are widely used for drought prediction [32,33]. More
advanced models, such as the seasonal autoregressive integrated moving average ( [32,90]), have
been developed to address the shortcomings of the ARIMA family [114]. Most existing models in
this category assume a linear relationship between predictors (e.g. previous SPI) and predictand
(e.g. future SPI) and may fall short when this relationship is nonlinear [29]; however, recent
advances [115] allow simulations preserving copula dependence structures and non-Gaussian
distributions.

(b) Regression models
Regression analysis refers to a large group of predictive models that include linear, multiple
linear regression models including the generalized linear models (e.g. [116]), more complex
nonlinear regression and machine learning (ML)/artificial intelligence (AI) models [114,117,119].
A large body of literature uses multiple linear regression models (e.g. [4,17,29], and the references
therein), and hence we separate this type from ML/AI models (next section). Multiple linear
regression models allow for incorporating several predictors, including variables that represent
persistence (i.e. antecedent drought indicators) as well as those of teleconnections (i.e. SST
anomaly), and hence are more flexible to merge information from various sources for improved
drought forecasting, but are more prone to overfitting [29]. These models allow incorporating
nonlinearity by transforming the predictors. The logistic, log-linear and other regression function
regimes were found useful in forecasting SPI and SPEI as well as other drought impacts [119].
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These methods have also been used in pattern-based down-scaling of data useful in forecasting.
One downside of regression models is the assumption of linearity or a particular form of nonlinear
behaviour, which does not always hold at long time scales.

(c) Bayesian models
Naive Bayes models are classification techniques based on Bayes’ theorem and have been used in
drought forecasting [120,121]. The naive assumption is that models assume independence among
predictors. Naive Bayes’ models have been shown to be sensitive to the predictor variables used.
The classification power of these models has been used to focus on crop-specific response to
drought [122]. Bayesian network models have been used as an accurate statistical scheme for
probabilistic modelling aiming to incorporate cause–effect relationships between variables for
water resource management purposes [123]. These simple models have been shown to perform
well in classification on a low number of training data.

While many papers have shown the strength of statistical models for drought prediction,
their overall performance is not significantly different from dynamic models. Some studies have
reported the improved performance of statistical models relative to dynamic ones (e.g. [124]),
other studies have shown that dynamic models at least outperform persistence-based statistical
models (e.g. [125]). However, both methods continue to fall short when it comes to long-range
forecasting (e.g. six-month or even three-month lead times).

4. Artificial intelligence and machine learning models
AI refers to a general category of methods and models, including ML models, that leverage
computers and machines to imitate the human mind’s problem-solving and decision-making
capabilities. AI/ML models are statistical by nature and most of the issues discussed in the
previous section also apply to them. Continual increases in computing power and the availability
of data has allowed researchers to expand on and improve drought forecasting models of this
type, the theories for which draw from the evolving fields and subfields of statistics, hydrology,
physics and computation. Drought forecasting using machine learning and artificial intelligence
seeks to estimate and predict characteristics, indices and intensity of drought phenomenon
over different spatial and temporal scales using computer algorithms that approximate models
based largely on data. The current state of drought forecasting using ML/AI can be analysed
by considering model class characteristics and overall usefulness which evolve and hybridize
(including with physically based models) as the field continues to grow. In this section, we discuss
the recent advances in AI/ML models separately in more detail.

AI models commonly used for drought forecasting or similar applications with the potential to
be used for drought prediction include fuzzy logic based models ( [126–129]), genetic algorithm
([130,131]), genetic programming ([132]), clustering methods such as K-means and nearest
neighbour [133–135], as well as a variety of ML models such as artificial neural networks (ANNs;
[26,118,136,142–]), support vector regression ([72]), support vector machine (SVM; [143,144]),
decision tree ([145,146]) and random forest ([147–151]). More recently, boosting algorithms, such
as XGBoost [152] and deep generative models [153–155] including variational autoencoders
(VAEs; [156]), and generative adversarial networks (GANs; [157]) have shown great promise
for drought forecasting performance improvement. Further, models that focus on predicting
a distribution rather than a value, e.g. contextual generative adversarial nets ( [158]), are
particularly attractive for drought prediction applications, specifically when fine-tuned to the
drought prediction domain (e.g. by constraining the loss function). AI models vary greatly with
respect to complexity and a more complex model (e.g. GANs) may not necessarily outperform
a simple ANN model, especially when spatial or temporal patterns/changes are not very
important.

ANN models have been widely used in climate data analysis and hydrology for detecting
nonlinear interactions between input and output variables [26,159,164]. The structure of these
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ANNs consists of layers of nodes, going from input to output, connected by nonlinear functions,
and a variety of different neural network architectures exist to better learn different types and
structures of data [159]. ANN models have also been used to investigate the influence of global
oceanic/atmospheric circulation patterns (e.g. NAO, ENSO) on drought [117,136,138–165]. The
so-called recursive neural networks map from several previous states to a single output node to
forecast one state ahead, whereas direct approaches estimate several future states from previous
states. Recursive models perform better at smaller time scales, whereas direct models are expected
to perform better over longer time periods though this issue cannot be simply generalized
[118,166]. ANN methods provide great flexibility in computation, making them attractive for
modelling complex phenomenon like drought; however, they can be prone to overfitting, and
the computations involved can easily become a black box if proper attention is not paid to model
construction [167]. ANN models are frequently combined with other approaches, including other
probabilistic methods and even deterministic models [168,169].

A more attractive and powerful category of AI models, with significant potential applications
to drought prediction, is the so-called deep generative models. Broadly, generative models
combine the benefits of neural networks and probabilistic methods for a wide range of
applications [153]. Two key architectures in this class include the variational autoencoders (VAEs;
[156]) and GANs ([157]). These models have been shown to yield accurate, high-resolution
predictions for precipitation, as well as good computational performance [154]; however, work
remains in the application of these models [155].

Regardless of the model type, a major challenge in the field of environmental sciences
including drought prediction is limited data size for training and validation purposes. There are
opportunities to address this issue, for example through transfer learning (e.g. [170]) or training
models on climate model simulations [171] that we have not addressed as they are beyond the
scope of this drought-focused article.

The aforementioned list is by no means exhaustive, and models are not mutually exclusive
as often drought forecasting will employ combinations of model sub-classes to different model
functions depending on their relative strengths. Our goal is not to discuss one method versus
another. Instead, in the following section we offer some thoughts on how AI/ML models can
improve drought prediction.

5. Prospects for improving drought prediction

(a) Machine learning and uncertainty
In AI/ML applications to drought prediction (and arguably most other climate and hydrology
applications) model developers justify their method by showing they can reproduce some
historical observations through minimizing an error function or maximizing a dependence
metric. Here, we argue for the need to shift our focus from just reproducing the past data,
to the stability of the uncertainty/error along with reproducing historical events. Data-driven
AI/ML models allow processing large datasets from climate simulations, remote sensing
and observations, offering unique opportunities to benchmark and examine drought-related
processes and prediction. The trend in published work in this area indicates foresights for
acceleration of model development and diagnosis in this area. Most current attempts involve
using off-the-shelf machine learning tools to replace or refine a process or broadly physics-based
models. We claim that continuation of this trend does not necessarily lead to any significant
progress or breakthrough in drought prediction, unless we shift our focus from matching
simulations with some observations, to reliability and stability of the uncertainty in the evaluation
process. This means that we need to make a distinction of aleatoric and epistemic uncertainty
before formulating a machine learning model—an important fundamental step that has been
systematically ignored in our community.

An AI/ML model is typically a parametric function, whose parameters and parametric form
relies on our understanding of the problem. Given some training data (e.g. historical drought
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events), we optimize the AI/ML parameters of the learning machine to maximize/minimize an
objective function (e.g. predicting historical droughts with a certain lead time and smallest error
possible). A common formula for understanding this process is as follows [172]:

Learning = Representation + Evaluation + Optimization.

Here, representation refers to the parametric form of the AI/ML model, as well as the
feature representation of the data; evaluation refers to the objective function that measures the
performance of the AI/ML model; and optimization refers to the process of searching parameters
for the optimally performing ones. For discussion on how the different learning algorithms
discussed above fit into this formula, see [172].

Most recent studies focus on the aspect of representation (R), in the sense that learning
algorithms of different parametric forms are proposed and tested for specific tasks (e.g. improving
lead time in drought prediction). Deep neural networks, which learn hierarchical feature
representations from raw data, have achieved considerable success, compared to conventional
learning algorithms that work on predefined feature representations. However, the aspect of
evaluation (E) is often overlooked in developing data-driven models, as most studies fail to
distinguish various uncertainty sources in defining the learning objective function. To illustrate
this point, consider how we use dynamical seasonal forecasts versus statistical (including AI/ML)
seasonal forecasts. In dynamical seasonal forecasting, we apply numerical models to explicitly
simulate plausible climate state trajectories, starting from an ensemble of possible current climate
states. The uncertainties arising from model initialization, model formulation and ensemble
sampling can be quantified, though the process might require substantial investments of time
and computations resources. For example, one can easily separate the uncertainty associated with
initial conditions using the kind of experiments shown in figure 1 (note that here we focus on
model uncertainty and we are not referring to the overall uncertainty including lack of knowledge
and information).

In AI/ML seasonal forecasting, we apply machine learning tools to simulate the statistical
dependency between the predictand and its drivers, based on the available data, mostly from
observations. The uncertainties from the training data, internal climate variability, and model
representation are often mingled into a single objective function subject to optimization. Unlike
processed-based models, separating these uncertainties are not that straightforward, if not
impossible at present time. Let us make a distinction between these sources of uncertainty. The
uncertainty from the training data is typically beyond the control of the modeller; however, it can
be evaluated by testing different fractions of the data randomly for training. While this random
sampling offers a general idea about the sample size uncertainty, it does not offer much insight
into the uncertainty associated with the quality of the data used for training. For this reason,
we can argue that this source of uncertainty is beyond the control of the modeller. Uncertainty
associated with model representation, at least in theory, can be tested by trying a wide range
of model structures, though it is rarely investigated/considered in practice. Uncertainty from
internal climate variability is due to the chaotic nature of climate–atmosphere–ocean dynamic
interactions, and varies as a function of the initial climate state and processes involved. In an ideal
world, these sources of uncertainty should not be simply minimized, but should be quantified
using a probabilistic representation, and reduced as much as possible. Without clear distinction
and treatment of these uncertainties, we cannot make significant advances in drought prediction,
nor can we gain new foresights about the barriers imposed by these uncertainties. We believe that
the first step forward should be a shift in our focus toward quantifying the stability of uncertainty,
rather than the goodness of fit (figure 4).

To illustrate this issue, let us assume an AI/ML drought predictions model (blue line in
figure 4) in a historical period is being evaluated against observations (red line in figure 4), and
the dotted lines show the overall uncertainty bounds. Here, the model is applied to four different
locations or four different periods (figure 4a–d) and from the error perspective all models are
equally good. In most applications in the literature, the focus is on the goodness of fit (e.g. the root
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Figure 4. Conceptual illustration of instability of uncertainty bounds in model simulations of four different events with similar
overall error. (Online version in colour.)

mean squared error or some indicator of dependence between the red and blue lines). However,
the uncertainty bounds are not consistent from one location to the other (or from one event to
another). This can be considered as unstable or inconsistent uncertainty when the model is used in
different locations or different periods in the same region. While we agree that error is important,
we argue that we need methods specifically designed to evaluate the stability of the uncertainty in
our AI/ML models or broadly statistical models. This also applies to physically based dynamical
models, but it is more important for black box AI/ML models in which separating error sources is
not straightforward. Of course, an unusually wide range of uncertainty is not helpful even if the
uncertainty bounds are stable and consistent across different locations. We need to make progress
in both the spread and its stability. While there are numerous uncertainty quantification methods
and ensemble assessment metrics [173–177], we need to develop drought specific uncertainty
metrics and objective functions that focus on both stability of uncertainty and its range.

We note that the hydrological and climate sciences community has long realized the need for
distinguishing different sources of uncertainty through defining the terms aleatoric uncertainty
referring to the intrinsic random component of the climate system (e.g. the internal climate
variability) and epistemic uncertainty referring to uncertainties arising from our imperfect state
of knowledge (e.g. systematic biases in data and models) [178–180]. While this distinction of
aleatoric and epistemic uncertainty is well understood, we have not yet applied these concepts
well in our AI/ML model design and/or objective functions. Neither do we believe that
mathematically separating the two types of uncertainty is necessarily required as in practice
what matters is the overall uncertainty of the model. What is more important is quantifying and
evaluating the stability of uncertainty in different regions or periods. We predict that more efforts
in deriving better objective functions that go beyond mere error covering the broader uncertainty
characteristics, especially stability of uncertainty, can lead to a major advance in our not AI/ML
models, but also dynamical model simulations.

(b) Hybrid dynamical–statistical models
Earlier in this article, we discussed a wide range of statistical and dynamical models. In a
seminal work, Hasselmann [181] showed how stochastic models can emerge from deterministic
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Figure 5. Schematic view of a hybrid statistical–dynamical model in which the statistical and dynamic models
are developed and parametrized independently. The outputs are then merged using an ensemble merging/response
algorithm. MEI, Multivariate Enso Index (Online version in colour.)

formulations. Since then, many studies have shown that combining statistical and dynamical
models can improve seasonal precipitation prediction (e.g. [81,182]). In most applications,
however, statistical aspect is mainly a post-processing component applied to the dynamic model
outputs for weighting the ensemble members, uncertainty quantification or data assimilation
(e.g. [183–187]). We believe there is a need for fully hybrid dynamical and statistical (including
AI/ML) seasonal drought prediction frameworks to take advantage of the strengths of both
types of models. In a fully hybrid approach, instead of using the two types in series, dynamical
and statistical models should be applied in parallel and even independent of each other (e.g.
[188–190]) and then combined using an ensemble merging or response method (e.g. [191]).
Madadgar et al. [188] introduced a fully hybrid dynamical–statistical model using NMME
simulations and a Bayesian analogue-year approach based on oceanic and climatic circulation
patterns. The two ensembles are then merged using the so-called Expert Advice algorithm
[191]—figure 5 for a schematic description and an example application to California.

In addition to improving drought prediction, by combining the strength of two types of
models, insight can be gained about the relative contributions of the different types of drought
prediction models across space and time. For example, a previous study showed that the
ensemble mean of the NMME drought predictions received higher weights in northern California,
whereas a statistical model attained higher weighting factors in southern California, increasing
the overall hybrid predictability by 5–60% relative to each individual model [188]. While
numerous studies have emerged on integrating statistical models through post processing and/or
data assimilation, little progress has been made in fully hybrid methods. We believe more efforts
should focus in this direction, especially for improving regional drought prediction. Drought
forecasting methods often focus on continental-scale or national-level predictions, paying less
attention to regional forecasting and assessment. However, given substantial variability across
spatial scales in terms of both impacts and drought drivers, for improving water management
and decision-making we should focus on more regionally relevant models. At regional scales,
using a fully hybrid model, different sources of drought predictability may be harnessed through
different forecasting methods (e.g. statistical dependence with climatic and oceanic indices versus
physics-based modelling). We note that the earlier point about the need to focus on stability of
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uncertainty, instead of just performance of the ensemble mean relative to observations (discussed
in the previous section), also applies to hybrid statistical–dynamical models.

Also, we should consider whether uncertainty, conceptually and from a theoretical viewpoint,
should be considered ‘stable’ or ‘unstable’ to better inform objective functions using this concept.
We could assume uncertainty as a process itself and if ‘unstable’over time or in response to a
process then it could be described and studied by a non-stationary process. The question now
is if the characteristics of such a process can be identified and quantified. Uncertainty as a non-
stationary space–time process results by the space–time variability of its two main components,
that is aleatoric and epistemic uncertainty. By definition, aleatoric uncertainty cannot be reduced
as it regards the stochastic component of a process given that the process is described by the best
possible model. Yet this does not imply that the best possible model performs equally well in
different locations or time periods. The same process, e.g. drought, for physical reasons might be
more chaotic and unpredictable in a specific location than in another. On the other hand, epistemic
uncertainty can be reduced if additional or better information feeds or modifies the model. This
does not imply that our potential to improve a model or the accuracy of information is the same
at different location or periods in time. It seems, thus, the idea of conceptualizing and studying
uncertainty as a non-stationary process in space and time might offer new insights.

(c) Empirical teleconnections
We postulate that the recent focus on predicting droughts based on known teleconnections (e.g.
ENSO) has potentially slowed down the progress in improving our forecasting capabilities. Is
the actual predictive signal within the known teleconnections or unknown phenomena waiting
to be discovered? Observed changes in sea surface temperatures, defining some of the widely
used teleconnections, could be the result of undiscovered oceanic currents causing a vertical
temperature gradient in certain locations, leading to sea surface temperature changes. Always
starting with known teleconnections (or at least what we think we know), leads to a Platonic
mindset (after [192]) privileging known teleconnections over less elegant or difficult to explain
alternatives. When this Platonic mindset meets the chaotic reality of the ocean–atmosphere
interactions and drought prediction, it becomes quite clear that there is a huge gap between
what we actually know relative to what we think we know (i.e. our drought predicative power is
very limited despite a large number of articles claiming strong teleconnections between different
locations). This can become even more clear if we assume that uncertainty is a non-stationary
space–time process, and, thus, changes in space and time.

To illustrate this issue, we have designed a simple experiment. Note that we are not
presenting this experiment as a new predictive model that should be used from now on.
Instead, we use the following experiment to show an alternative approach we term, empirical
teleconnections. The experiment conducts an exhaustive, bottom-up, brute-force search algorithm
for discovering predictive relationships between specific ocean–land regions (see the details in
appendix A). Instead of assuming a certain relationship exists, we search for every combination
of oceanic surface temperatures from the entire world (millions of them) to find the combination
offering the best predictive drought information at 3–12-month lead times. For the sake of
simplicity, assume ‘drought’ corresponds to precipitation below the 33rd percentile, ‘wet’ refers
to precipitation above the 66th percentile and ‘normal’ would be everything in between. For the
state of California, for example, after exploring all the possible ocean–land combinations, several
locations (dots in the inset map in figure 6) appear to give the highest predictive information.
The locations are empirically derived and do not overlap collectively with the established
teleconnections commonly used for drought prediction. Figure 6 displays predicted November–
April precipitation in California using sea surface temperatures from the selected locations
against observations after a leave-one-out cross-validation (see appendix A). The figure shows
that the empirically derived teleconnections (EmpTe), significantly improve drought prediction
relative to the existing teleconnections.
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Figure 6. California precipitation, the best empirical teleconnection (EmpTe) and the existing teleconnections. (a) California
wet season precipitation closely follows EmpTe. (b) The bar graph of EmpTe hit and false alarm rates compared to five well-
known teleconnections. The locations that provide predictive information are highlighted with dots in the global map in the
top right panel. (Online version in colour.)

The first question that comes to mind is whether the seemingly good results are due to
overfitting. We will address this issue in the following section (see Closing the loop: towards
bottom-up verification). The model captures California’s significant wet and dry years, such as
the 1997/1998 precipitation event and the 2011–2014 drought (figure 6). Relative to the other
known teleconnection, the EmpTe offers higher hits (correctly identifying wet and dry periods)
and lower false predictions (see appendix A for a more detailed description of false and hit).
This issue highlights the potential of exhaustive search methods for identifying what we call
empirical teleconnections. This is where AI/ML models can potentially help up with the next
breakthrough. Deep learning models that do not have predefined structures (i.e. can handle a
wide range of inputs without making assumptions about the structure of the network) can be
particularly attractive for this kind of investigation.

Note that in this example, we only explored all possible combinations of sea surface
temperature pixels and California precipitation. We cannot explain the physical reasons for these
EmpTe improving predictive information. It could just be a statistical flaw. However, if the
predictive results remain consistent (more on this issue later) after rigorous tests, it will indicate
that there are potentially unknown processes waiting to be discovered. Ideally, other drought
relevant variables should be included, mounting the combinations to billions and billions. In
doing so, the search for empirical teleconnections could potentially lead to discovering even new
physically explainable teleconnections or unknown phenomena. We emphasize that when there
are many potential predictors and input variables (here, millions of combinations of sea surface
temperature), spurious predictive patterns/ability may emerge just by chance. For this reason,
having rigorous methods for validation and verification is critical. The bottom-up approach
discussed in the following section is one out of many ways to avoid potential spurious predictive
patterns.

(d) Closing the loop: towards bottom-up verification
Let us revisit the question we asked earlier: Are the empirical teleconnections shown in figure 6
real or possibly a statistical artefact or spurious predictive pattern? Although we conducted
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Figure 7. California Empirical Teleconnections (EmpeTe) significant correlationmap. This map shows the grids that EmpeTe has
a statistically significant (significance level= 0.01) correlation with precipitation across California, as well as parts of the ENSO
region and the Middle East. (Online version in colour.)

a commonly used leave-one-out cross-validation, when there are millions and millions of
combinations of variables the potential for overfitting is high and, hence, the results could still
be physically meaningless. Correlation between two or more variables, even a very strong one,
does not necessarily prove causality or predictive information (e.g. [193]). We believe we need
to go beyond the typical validation and verification methods. One option is to close the loop
by some form of backward analysis. We usually try to find one or more predictors and then we
build a top-down model to predict drought. If we start with historical droughts and consider all
potential predictors, do we reach the same set of predictors that we typically use in our top-down
models? Considering the experiment in figure 6, what would our results look like if we conducted
the experiment backwards?

In figure 7, we determine the precipitation grid boxes that have a statistically significant
correlation, for example with the empirically derived (EmpTe) SST locations that provide
predictive information for California (i.e. the EmpTe locations shown in figure 6). If the empirical
teleconnections are statistical artefacts the backward analysis should lead to some spatially
random pattern. If the area that shows a significant correlation with the predictive points displays
some consistent spatial pattern, we can infer that the relationship may (but still not necessarily) be
related to physical processes across coherent geographical regions that were previously unknown.
Figure 7 displays the regions where wet season precipitation has a statistically significant
(significance level = 0.01) correlation with the locations that provide predictive information. We
show that our empirical teleconnection for California has a statistically significant correlation with
precipitation across California and the southwestern USA, demonstrating a strikingly coherent
spatial pattern. This indicates that the observed relationship is likely not random and involves
a data-driven teleconnection that cannot be explained by previously defined teleconnections,
moisture transport patterns, etc. It is interesting to note that there is also a significant relationship
with our empirically derived teleconnections and the ENSO region in the Pacific Ocean. This
figure portrays a relationship between EmpTe locations and California wet-season precipitation
that is not a mere coincidence, but rather displays a strong correspondence to the entire region.

Unfortunately, we cannot explain the reason or confidently claim that there is a physical
reason behind this promising backward–forward analysis. That is not the point we would
like to highlight here. Instead, we emphasize that the AI/ML models (from simple brute
force search algorithms to complex deep learning methods) can help us, first, identify such
potentially predictive information from a bottom-up approach without any a priori assumption
on the drivers. The current focus in the AI/ML community to improve drought prediction
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(i.e. improving the lead time or match between predictions and observations) from a top-down
perspective is important but it is unlikely to result in a major leap. Instead, shifting our AI/ML
models to build forward–backward predictive assessments, could lead to important discoveries.
The outputs of such models can be the starting point to focus on physical understanding and
search for process-based reasons for the empirical teleconnections. While this kind of forward–
backward analysis cannot be done with the current dynamical models, learning algorithms and
pattern recognition approaches are ideal for such analysis. Further, the outputs of an AI/ML-
powered EmpTe model can be used as the statistical component of a hybrid statistical–dynamical
drought prediction model. Note that a bottom-up or forward–backward assessment can only
advance drought prediction when the right model is used, and input data provide relevant
information. If the model is not representative or input variables provide insufficient information
and/or include substantial overlap, the additional steps for forward–backward assessment does
not lead to any improvement.

Having representative models and data, we postulate that by shifting our top-down AI/ML
perspective to a more bottom-up, or even better, forward–backward analysis we can not only
improve our predictive models, but also potentially discover unknown phenomena. In this
example, there appears to be at least a statistical relationship between California and the
Middle East precipitation. The literature links the two regions to ENSO, but the mechanics of
ENSO influencing precipitation in the Middle East is not well understood. Bottom-up learning
algorithms can be used to extract interesting patterns of this kind for further future research.
While the example here, and the focus of our paper, is on drought forecasting, one can argue that
this applies to other types of predictive models.

6. Final remarks
The purpose of this article is not to discount the significant progress we have made in the
area of drought forecasting, especially over the past two decades. By focusing on the current
limitations, we aim to highlight important research gaps and key opportunities to improve the
current drought forecasting models. For this reason, much of this article focuses on what we can
do to potentially transform the next generation of drought forecasting models.

Understandably, decision-makers prefer inaccurate forecasts rather than no forecasts at all
[192]. This is not unusual and is not limited to the area of drought forecasting. However, providing
inaccurate forecasts is an ever-present concern since forecasts can embolden communities to take
on increased risk or not. Recall the US Midwest Drought of 2012 we discuss at the beginning
of this article. One could argue that if the predictions were not favourable, farmers would not
have planted a record area of cropland. We also believe that having inaccurate or sometimes
accurate forecasts is better than no forecast. However, we emphasize that what is missing in our
current drought forecasting models is not simply the magnitude of the uncertainty, but a lack of
awareness of it. More efforts should focus on quantifying the uncertainty beyond just an ensemble
of model simulations.

A shift in our focus toward quantifying the stability of uncertainty in drought prediction
models, rather than the goodness of fit or reproducing the past, could be a first step toward
testing the robustness of our theories. Instead of solely focusing on improving predictions (e.g.
increasing the lead time by a month or two for specific events), we have to put our efforts into
improving the robustness of our theories. Some relevant questions to address this issue include:
Does the theory behind our predictive model offer similarly reliable predictions in the same
location but over different time periods? How does the robustness or uncertainty change if the
model is applied to different locations (or at least climatically similar regions)? Quantifying the
robustness of uncertainty requires both basic and applied research tailored to drought forecasting,
including indicators with realistic measures of uncertainty.

Current theories, including known teleconnections, commonly used for drought prediction are
top-down. These theories assume that the process(es) and/or driver(s) for drought forecasting
are known. In other words, current approaches start with a model and impose it on the observed
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events (reality). We believe that using a different perspective may be advantageous to further
improving drought forecasting models. Instead of a top-down approach, a bottom-up perspective
can be used that starts from reality (here, observed events) and searches for model(s) and driver(s)
that work for predicting drought. The idea of EmpTe is one example of how to look at drought
prediction from a bottom-up viewpoint. A seemingly reasonable EmpTe will remain empirical
until the physics behind it is discovered. An EmpTe that is merely a statistical flaw will be
eliminated when tested for robustness and uncertainty across space and time. More efforts
in further developing bottom-up approaches, particularly using recent advances in artificial
intelligence and machine learning, could potentially even lead to the discovery of new physically
explainable teleconnections or drivers.

Finally, we need move towards what we refer to as ‘impact-based drought prediction’ by
linking our drought forecasting tools with drought impact assessment models. Storyline-based
concepts [194,195] especially when centred on actual or even expected drought impacts can be the
first step toward developing impact-based drought prediction models. We acknowledge that our
current drought prediction models are far from ideal and have limited long-range predictability.
However, even a short-rage impact-based model (e.g. expected crop failure, water shortage, forest
fires activity) can have significant impacts on emergency response and planning.
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Appendix A
For the experiment discussed in this article, we obtained the sea surface temperature (SST)
dataset from the NOAA Optimum Interpolation Sea Surface Temperature (OISST) V2 (http://
www.esrl.noaa.gov/psd/). The OISST dataset has a temporal resolution of one month, and a
spatial resolution of 1° × 1° [196]. We used the Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks – Climate Data Record (PERSIANN-CDR; [197]).
The data are available at a 0.25° × 0.25° spatial resolution from: http://chrsdata.eng.uci.edu.

We determined the empirical teleconnection by finding the two to n locations where the
three-month average of SSTs had the highest correlation with California’s wet-season, using a
brute-force (exhaustive) search algorithm [198]. We considered the wet season as the six highest
consecutive months of cumulative precipitation. In this study, n represents the number of grid
cells used to create our empirical teleconnection (here up to 10 grid cells). We placed a temporal
constraint where the SSTs must have a lead time of between 3 and 12 months, as we are interested
in drought forecasting. Once we determined the SST locations, the Raw Empirical Teleconnection
(EmpTeR):

EmpTee = (±SST1) + (±SST2) + (±SST3) + (±SST4) + · · · + (±SSTn),

where SST1, SST2, SST3, SST4 and SSTn are the three-month averaged SST values, and n is the
number of grid cells we use to derive the empirical teleconnection. We multiply the SST value
by +1 if the correlation with wet-season precipitation is positive, and by −1 if the correlation
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is negative. The number of points used in the empirical teleconnection is determined based on
which combination of SSTs has the highest correlation. Then we standardize EmpTeR as follows:

EmpTe = EmpTeR − mean(EmpTeR)
stdev(EmpTeR)

.

We similarly perform a temporal search for the well-known teleconnections (i.e. Multivariate
Enso Index (MEI), Southern Oscillation Index (SOI), PDO, Pacific/North American teleconnection
pattern (PNA) and Arctic Oscillation (AO)) to find the years with the highest correlation with
precipitation, and standardize the mean monthly values. We define the conditional probability of
wet hit as

Pr(Precipwet > PT|varm > varT) = Pr(Precipwet > PT ∩ varwet−m > varT)
Pr(varwet−m > varT)

m = 3 − 12,

and dry hit as

Pr(Precipwet < PT|varm < varT) = Pr(Precipwet < PT ∩ varwet−m < varT)
Pr(varwet−m < varT)

m = 3 − 12,

where Precipwet is the sum of precipitation during the wet season (e.g. NDJFMA), PT is the
threshold for (wet or dry) precipitation, var is the standardized mean monthly values of our
variable, varT is the threshold for (wet or dry) var, and m the best 3 months to calculate the
empirical teleconnection with a lead time of 3–12 months from the first month of the wet season.
The term m refers to the lead time , where the algorithm chooses the lead time between 3 and
12 months with the highest correlation in each gridbox.

We compared the prediction skill of our empirical teleconnection with that of other
teleconnections. Model skill is based on the mutual information between the prediction and
observation, and measures the dependence between two variables, defined as

MI(xt+τ , ot) =
∫ ∫

p(xt+τ , ot)log
[

p(xt+τ , ot)
p(ot)p(xt+τ )

]
dxt+τ dot,

where p(xt+τ , ot) is the joint distribution between the prediction (x) and the observation
(o), assuming p(x, o) = p(x|o)p(o). In the case that the observations are perfect (ot = xt), then
I(xt+τ , ot) = I(xt+τ , xt) [199].

Since mutual information is unbounded, we can convert the measure into a ‘score’ between 0
and 1 using the following transformation [200]:

skill score = 1 − e−2MI.

We present the results of the empirical teleconnection using a leave-one-out cross-validation
(LOO-CV) approach. To ensure that the model predictions are independent of the observations
for a given year, we hold out the observation data for the prediction year from the calibration
data. This LOO-CV process is repeated for all the years throughout the time series.
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